Association mining in time-varying domains
نویسندگان
چکیده
The input of a classical application of association mining is a large set of transactions, each consisting of a list of items a customer has paid for at a supermarket checkout desk. The goal is to identify groups of items (“itemsets”) that frequently co-occur in the same shopping carts. This paper focuses on an aspect that has so far received relatively little attention: the composition of the list of frequent itemsets may change in time as the purchasing habits get affected by fashion, season, and introduction of new products. We investigate (1) heuristics for the detection of such changes in time-ordered databases and (2) techniques that update the set of frequent itemsets when the change is detected. As the main performance criterion, we use the accuracy with which our program maintains the current list of frequent itemsets in a time-varying environment.
منابع مشابه
Data sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملA Fuzzy Approach for Mining Generalized Frequent Temporal Patterns
The incorporation of temporal semantics into the traditional data mining techniques has caused the creation of a new area called Temporal Data Mining. This incorporation is especially necessary if we want to extract useful knowledge from dynamic domains, which are time-varying in nature. Related to this topic, we proposed in [11] an algorithm named TSET for mining temporal patterns (sequences) ...
متن کاملFuzzy Data Mining for Discovering Changes in Association Rules over Time
Association rule mining is an important topic in data mining research. Many algorithms have been developed for such task and they typically assume that the underlying associations hidden in the data are stable over time. However, in real world domains, it is possible that the data characteristics and hence the associations change significantly over time. Existing data mining algorithms have not...
متن کاملProposing New Methods to Enhance the Low-Resolution Simulated GPR Responses in the Frequency and Wavelet Domains
To date, a number of numerical methods, including the popular Finite-Difference Time Domain (FDTD) technique, have been proposed to simulate Ground-Penetrating Radar (GPR) responses. Despite having a number of advantages, the finite-difference method also has pitfalls such as being very time consuming in simulating the most common case of media with high dielectric permittivity, causing the for...
متن کاملA Regression-Based Approach for Improving the Association Rule Mining through Predicting the Number of Rules on General Datasets
Association rule mining is one of the useful techniques in data mining and knowledge discovery that extracts interesting relationships between items in datasets. Generally, the number of association rules in a particular dataset mainly depends on the measures of ’support’ and ’confidence’. To choose the number of useful rules, normally, the measures of ’support’ and ’confidence’ need to be trie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intell. Data Anal.
دوره 9 شماره
صفحات -
تاریخ انتشار 2005